CS 205M: Lecture 4

Comparing Infinities

and

Hopefully (Intro to Propositional Logic)

Comparing Infinities:

Countable vs Uncountable Sets

- More precisely, we see how do we compare cardinalities ("sizes") of infinite sets.
- Infinite Sets- Sets containing infinitely many distinct elements. E.g. \mathbb{N} , $\{x:x|2\}$ (set of even nos.).
- Comparing cardinalities of finite set: Trivial.
 - To check: $|S| \leq |S'|$ -
 - (1) Count no. of elements in S (say k) and,
 - (2) S' (say k'). Is $k \le k$ '?

- Beyond the notion of counting.

- Beyond the notion of counting.

- Beyond the notion of counting.

- Beyond the notion of counting.

- Beyond the notion of counting.

- Beyond the notion of counting.

- Beyond the notion of counting.

- Beyond the notion of counting.

If there is an injective function from set of Kids to set of lce-creams then

- Beyond the notion of counting.

If there is an injective function from set of Kids to set of lce-creams then

"Universal" Carnival/Mela

|Kids | ≤ | Ice-creams |

- Beyond the notion of counting.

If there is an injective function from set of Kids to set of lce-creams then

"Universal" Carnival/Mela

|Kids| ≤ |Ice-creams|

|Kids| = |Ice-creams|

iff | Kids | | Ice-creams | and | Ice-creams | | Kids |

No. of Naturals vs. No. of Rationals? $|\mathbb{N}|<|\mathbb{Q}|$?

No. of Naturals vs. No. of Rationals?

- $|M| \leq |M| \dot{S}$
- F: $\mathbb{Q} \mapsto \mathbb{N}^2$. F(p/q) = (p,q). Hence, $|\mathbb{Q}| \leq |\mathbb{N}^2|$.
- ⑤ G: $\mathbb{N}^2 \mapsto \mathbb{N}$. $G((p,q)) = 2^p \times 3^q$. Notice that if $(p',q') \neq (p,q)$ then $G((p',q')) \neq G((p,q))$

(Unique Prime Factorization)

In fact one could show that for any finite sequence of natural numbers $(a_1, ..., a_n)$, we can associate a unique integer $2^{a_1} \times 3^{a_2} \times ... \times k^{a_n}$, where k is the n^{th} prime.

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1
- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

n_1	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
n_2	$m_{2,1}$	$m_{2,2}$	$m_{2,3}$	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
n_3	$m_{3,1}$	$m_{3,2}$	$m_{3,3}$			•	•	•	•			•	•	•			•		•	•	•	•	
n_4	$m_{4,1}$	$m_{4,2}$	$m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•
<i>n</i> 5	$m_{5,1}$	$m_{5,2}$	$m_{5,3}$	$m_{5,4}$	$m_{5,5}$												70 A M				•	•	•

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1
- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

n_1	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	•		•	•		•	•	•	•	•	•	•		•	•	•	•		•	•
n_2	$m_{2,1}$	$m_{2,2}$	$m_{2,3}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
n_3	$m_{3,1}$	$m_{3,2}$	$m_{3,3}$			•	•	•	•			•	•	•			•		•	•	•	•	•
n_4	$m_{4,1}$	$m_{4,2}$	$m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•
n5	$m_{5,1}$	$m_{5,2}$	$m_{5,3}$	$m_{5,4}$	$m_{5,5}$																•	•	•

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1
- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

n_1	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$		•	•	•				•	•		•	•		•		•	•		•	•
n_2	$m_{2,1}$	$m_{2,2}$	$m_{2,3}$	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•)•	•
n_3	$m_{3,1}$	$m_{3,2}$	$m_{3,3}$	•	•	•	•	•	•	·		•	·	•	•		•	•	•	•	•	•	•
n_4	$m_{4,1}$	$m_{4,2}$	$m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
n5	$m_{5,1}$	$m_{5,2}$	$m_{5,3}$	$m_{5,4}$	$m_{5,5}$	5.0															•	•	•

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1

n_1	$m_{1,1}$	$n_{1,2}$	m _{1,3}	•				•			•	•		•	•		·		•	•		•	•
n_2	$m_{2,1}$	$n_{2,2}$	$m_{2,3}$	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•)•	•
n_3	$m_{3,1}$	$n_{3,2}$	$(m_{3,3})$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
n_4	$m_{4,1}$	n _{4,2}	$m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
n5	$m_{5,1}$	n _{5,2}	$m_{5,3}$	$m_{5,4}$	$m_{5,5}$	546															•	•	•

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1
- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

n_1	$m_{1,1}$ $m_{1,1}$	$m_{1,3}$	•	•	•	•	•	•	•	•	•			•	•	•	•	•		•	•
n_2	$m_{2,1} m_{2,2}$	$m_{2,3}$	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	
n_3	$m_{3,1}$ $m_{3,2}$	$m_{3,3}$	•			•			•			•			•	•	•			•	•
	$m_{4,1} m_{4,2}$		$m_{4,4}$	$m_{4,5}$	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•
n_5	$m_{5,1}$ $m_{5,2}$	$m_{5,3}$	$m_{5,4}$	$m_{5,5}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1
- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

n_1 $m_{1,1}$ $m_{1,2}$ $m_{1,3}$	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
$n_2 m_{2,1} m_{2,2} m_{2,3}$	•	•	•	•	•		•		•	•	•	•	•	•	·	•	•	•	•	
n_3 $m_{3,1}$ $m_{3,2}$ $m_{3,3}$	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•
$n_4 m_{4,1} m_{4,2} m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
$n_5 m_{5,1} m_{5,2} m_{5,3}$	$m_{5,4}$	$(m_{5,5})$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

- $|\mathbb{N}| \leq |\mathbb{R}|$ Trivial Map every natural no. to itself. n_1
- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

70 100 100																				
$n_1 m_{1,1} m_{1,2} m_{1,3}$		•						•	•		•	•	•							
$n_2 m_{2,1} m_{2,2} m_{2,3}$	•	•	•	•	•		·	•	•	•	•	•	•	•	•	•	•		•	•
n_3 $m_{3,1}$ $m_{3,2}$ $m_{3,3}$		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
$n_4 m_{4,1} m_{4,2} m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•
$n_5 m_{5,1} m_{5,2} m_{5,3}$	$m_{5,4}$	$(m_{5,5})$	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•

Add 1 modulo 10.

- \bullet $|\mathbb{R}| \leq |\mathbb{N}|$? Assume yes. This implies, F: $[0,1) \mapsto \mathbb{N}$, and F is an injective function.

n_1	$m_{1,1}$ m	$m_{1,2} m_{1}$	1,3	•		•	•	•		•	•	•	•	•	•	•	•		•	•		•	•
n_2	$m_{2,1}$ m_2	$m_{2,2}$ m_{2}	2,3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
n_3	$m_{3,1} m$	3,2 (m	13,3	•	•		•	•		•	•	•	•	•	•	•	•		•	•	•	•	•
	$m_{4,1}$ $m_{4,1}$	4,2 m	4,3	$m_{4,4}$	$m_{4,5}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
n_5	$m_{5,1}$ m	5,2 m	¹ 5,3	$m_{5,4}$	$(m_{5,5})$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Add 1 modulo 10.

The new no. differs from i^{th} number at i^{th} digit. Hence, entirely new number, violating the assumtion.

In General,

- \bullet $|X| < |2^X|$, trivial for finite sets. For infinite sets,

 $n_1 n_2 n_3$

N1	$m_{1,1}$ $m_{1,2}$	$m_{1,3}$	•	•	•	•	•	•	• 6	•	•	•	•	•	•	•	•	•	•	•	•	•
N2	$m_{2,1} m_{2,2}$	$m_{2,3}$	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•
N3	$m_{3,1} m_{3,2}$	$m_{3,3}$		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
N4	$m_{4,1} m_{4,2}$	$m_{4,3}$	$m_{4,4}$	$m_{4,5}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	$m_{5,1}$ $m_{5,2}$	$m_{5,3}$	The same of the sa	$m_{5,5}$	STATE OF THE PARTY	•	•		•	•,	•	•	•	•	•	•	•			•		•

 $m_{i,j}$ sare either 0 or 1. Flip 0s and 1s.

Why Study Logic?

- Foundation of mathematics and computer science
- Helps in:
 - Designing circuits
 - Writing correct software (specifications and verification)
 - Constructing valid arguments and proofs
- Used in AI, algorithms, databases, security protocols, and more

Propositions.

- Building Blocks of Logics. That is why, it is also called as atoms.
- Proposition: A declarative sentence that is either true or false, but not both.
- Examples:
 - "The Earth is round." (Proposition)
 - "2 + 2 = 5" \checkmark (Proposition)
 - "Close the door." X (Not a proposition)
 - "x + 3 > 5" X (Depends on x; not a proposition unless x is defined)

Logical Operators: A, V, ¬

Operator	Symbol	Name
NOT	¬p	Negation
AND	p ^ q	Conjunction
OR	p v q	Disjunction

Logical Operators: A, V, ¬

- Examples:
- $\neg (2 < 3) \Rightarrow \text{False}$
- $(2 > 1) \land (4 = 4) \Rightarrow True$
- $(5 > 10) \lor (3 = 3) \Rightarrow True$

Logical Operators: A, V, ¬

- Examples:
- Conjunction (AND) p ∧ q : "It is raining and it is cold."
 True only if both are true.
- Disjunction (OR) p ∨ q: "I will go for a walk or I will stay home."
 True if either (or both) happen.
- Negation (NOT) ¬p: "It is not raining."
 True if the statement "it is raining" is false.

p	q
T	T
T	F
F	T
F	F

T F F F F T T T
F T T
F T

p	q	¬p	pΛq
T	T	F	T
T	F	F	F
F	T	T	F
F	F	T	F

р	q	¬p	pΛq	p v q
T	T	F	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	F

Implication: >

- If it rains, then the ground is wet.
- When is the above statement false?

Implication: >

- $p \rightarrow q$: "If p, then q"
- False only when p is true and q is false.

p	q	p → q
T	T	T
T	F	F
F	T	T
F	F	Т

Bi-implication, if and only if: ->

- It rains if and only if the ground is wet.
- When is the above statement false?

Bi-implication, ↔

- $p \leftrightarrow q$: "p if and only if q", $p \rightarrow q$ and $q \rightarrow p$
- True when both p and q are same.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	Т

Propositions to Bits – Bitwise Logic

- Propositions can be represented as bits: $T \rightarrow 1$, $F \rightarrow 0$
- Logical operations correspond to bitwise operators.

```
 p
 q
 p∧q
 p∨q
 ¬p

 1
 0
 0
 1
 0

 1
 1
 1
 1
 0
```

Bitwise Ops: AND: 0101 & 1100 = 0100, OR: 0101 | 1100 = 1101,

NOT: ~0101 = 1010 (bitwise complement)

Equivalence of Boolean Expressions:

Next Class