CS 205M: Lecture 4
Comparing Infinities
and

Hopefully
(Intro to Propositional Logic)



Comparing Infinities:

Countable vs Uncountable Sefts

s More precisely, we see how do we compare cardinalities (“sizes”)
of Infinite sefs.

@ Infinite Sets- Sets containing infintely many distinct elements.
E.g. N, {x : x|2} (set of even nos.).

o Comparing cardinalities of finite set: Trivial.
To check: |5 = |S'}-
(1) Count no. of elements Iin S (say k) and,
(2] S {say K'J. lsigds ko
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Abstracting Notfion of Comparing Sizes:
- Beyond the notion of counfting.
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No. of Naturals vs. No. of Rationals?¢

IN| £ |Q| - Trivial - Map every natural no. to itself.

Q < IN| @
 F: Q> N2 F(p/q) = (p,q). Hence, |Q| = |N?|.

G: N N. G((p,q)) = 2Px 39 Notice thatif (p,q)# (p,g) then
G((p’9)) = G((p, )

(Unigue Prime Factorization)

n fact one could show that for any finite sequence of natural numbers

aiy, ..., &,), we can associate a unique integer 2% x 3% x ... x k%, where K is the
nth

prime.



No. of Naturals vs. No. of Reals?
IN| < [R]e

@ IN|] < |R| - Trivial - Map every natural no. to itself. Ny

@ |R] £ |N|] 2 Assume yes. This implies, F: [0,1) » N, and F is an injective function.
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No. of Naturals vs. No. of Reals?
IN| < [R]e

@ IN|] < |R| - Trivial - Map every natural no. to itself. Ny

@ |R] £ |N|] 2 Assume yes. This implies, F: [0,1) » N, and F is an injective function.
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No. of Naturals vs. No. of Reals?
IN| < [R]e

@ IN] < |R| - Trivial - Map every natural no. to itself. Ny

@ |R] £ |N|] 2 Assume yes. This implies, F: [0,1) » N, and F is an injective function.

n5 M5 1|Ms52 | M5 31 M5 4M55)

Add 1 modulo 10.

The new no. differs from it" number at it digit.
Hence, entirely new number, violating the assumtion.




N General,

o |X| < |2%|, trivial for finite sets. For infinite sets,

@ Let X={ny, Ny, ...}

N1 ml,l}ml,z My3 | e

N2 M3 1My My3

g N
N3 | M31|{M32 @5} ;

N4 My 1My |My3|MygiMys)|

e
N5 [M51|Ms52 | Ms 3 m5,4(m55“" o

i
o

mjjsare either O or 1.
Flip Os and 1s.



Why Study Logice

* Foundation of mathematics and computer science

* Helps in:
* Designing circuits
* Writing correct software (specifications and verification)
* Constructing valid arguments and proofs

* Used in Al, algorithms, databases, security protocols, and more



Proposifions.

* Building Blocks of Logics. That is why, it is also called as atoms.
* Proposition: A declarative sentence that is either true or false, but not both.
 Examples:

* "The Earthis round." «” (Proposition)

e "2+2=5" ¢ (Proposition)

* "Close the door." X (Not a proposition)

* "x+3>5" X (Depends on x; not a proposition unless x is defined)



Logical Operators: A, Vv, ™

Operator Name

NOT Negation

AND Conjunction

Disjunction




Logical Operators: A, Vv, ™

« Examples:

« =(2<3) = False

e 2>1)AN(4=4) = True

« (6>10)Vv (3=3)= True



Logical Operators: A, Vv, ™

Examples:

Conjunction (AND) —p A g : "ltis raining and it is cold.”
True only If both are true.

Disjunction (OR) — p Vv q: "l will go for a walk or | will stay home."

True If either (or both) happen.

Negation (NOT) — —p: "lt is not raining.”
True If the statement "It Is raining" Is false.
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Implication: =2

 |f it rains, then the ground Is wet.

« When iIs the above statement false?



Implication: =2

c p—q: " If p,then q”

* False only when p Is true and q Is false.




Bl-implication, it and only if: 2

* |t rains If and only If the ground Is wet.

« When iIs the above statement false?



Bl-implication, «

e p—oqg:'pifandonlyifqg’, p—qgandq—p

* True when both p and g are same.




Propositions to Bits — Bitwise Logic

* Propositions can be representedas bits: T— 1, F —» 0

* Logical operations correspond to bitwise operators.

P g PACQ pVq —P
1 0 0 1 0
1 1 1 1 0

» Bitwise Ops: AND: 0101 & 1100 = 0100, OR: 0101 | 1100 = 1101,

NOT: ~0101 = 1010 (bitwise complement)



Equivalence of Boolean Expressions:

Next Class



